Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(11): 7264-7270, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970413

RESUMO

In this work, the protein quality of defatted hemp hearts and protein-enriched hemp fractions was determined. Protein quality was assessed using a rodent bioassay to evaluate growth and protein digestibility, while amino acid composition was determined via HPLC. A method for determining in vitro protein digestibility was compared to in vivo methodology and used to generate an in vitro protein quality score. The true protein digestibility of hemp protein 2, a hemp protein concentrate, was significantly lower than that of either defatted hemp hearts or hemp protein 1, a hemp protein concentrate (p < .05). While there was no relationship between the in vivo and in vitro measurements of protein digestibility (R 2 = .293, p = .459), there was a significant correlation between the protein digestibility-corrected amino acid score (PDCAAS) determined in vivo and in vitro PDCAAS (R 2 = .989, p = .005). The protein efficiency ratio of hemp protein 1 was significantly lower than that of either defatted hemp hearts or hemp protein 2 (p < .05). These data highlight the nutritional capacity of hemp protein sources while also demonstrating the relationship between in vivo and in vitro methods for determining protein quality.

2.
Nutrients ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836506

RESUMO

Management of type 2 diabetes mellitus (T2DM) is a pressing global healthcare challenge. Innovative strategies that integrate superior medical and nutritional practices are essential for holistic care. As such, pulse consumption is encouraged for its potential benefit in reducing hypercholesterolaemia, dyslipidaemia, and triglyceride levels, as well as enhancing glycaemic control. This scoping review aims to assess the depth of evidence supporting the recommendation for pulse consumption in T2DM management and to identify gaps in the existing literature. We conducted a comprehensive search across the databases MEDLINE, Global Health, EMBASE, CINAHL, Web of Science, and the Cochrane Library (up to July 2023). We included population-based studies of any design, and excluded review-style articles. Articles published in languages other than English were also excluded. From the 2449 studies initially identified, 28 met our inclusion criteria. Acute postprandial trials demonstrated improved glucose responses and enhanced insulin responses to pulse-based intervention. Meanwhile, long-term trials reported meaningful improvements in T2DM indicators such as haemoglobin A1C (HbA1c), fasting glucose, fasting insulin, C-peptide, and markers of insulin resistance like homeostatic model assessment (HOMA). Integrating more pulses into the diets of diabetic individuals might offer an efficient and cost-effective strategy in the global initiative to combat T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Insulina , Hemoglobinas Glicadas , Glucose
3.
Foods ; 12(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569085

RESUMO

As countries increase their standard of living and individual income levels rise, there is a concomitant increase in the demand for animal-based protein. However, there are alternative sources. One of the alternatives available is that of increased direct human consumption of plant proteins. The quality of a dietary protein is an important consideration when discussing the merits of one protein source over another. The three most commonly used methods to express protein quality are the protein efficiency ratio (PER), a weight gain measurement; protein digestibility-corrected amino acid score (PDCAAS); and the digestible indispensable amino acid score (DIAAS). The possibility that alterations in the quality and quantity of protein in the diet could generate specific health outcomes is one being actively researched. Plant-based proteins may have additional beneficial properties for human health when compared to animal protein sources, including reductions in risk factors for cardiovascular disease and contributions to increased satiety. In this paper, the methods for the determination of protein quality and the potential beneficial qualities of plant proteins to human health will be described.

4.
J Nutr Biochem ; 102: 108937, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35017004

RESUMO

Sulphur amino acids (SAA) are essential for multiple physiological/metabolic processes, with the ratio of dietary methionine: cysteine (Met:Cys) being an important contributor to pro-inflammatory responses, including TNF-α activity. The current study was designed to determine the effect an altered dietary SAA ratio, and the resulting reliance on the transsulfuration pathway to supply Cys, will have on the inflammatory response. In the present study, 100 µg/kg of an intraperitoneal (IP) injection of lipopolysaccharide (LPS) was used as a model for systemic inflammation. Male Wistar rats were randomized to one of two amino acid-defined diets, (100Met:0Cys or 50Met:50Cys) and subdivided to receive either IP LPS or saline injections. LPS significantly increased total plasma Cys, homocysteine (Hcy) and glutathione (GSH) 240 min post-IP injection in rats fed a 50Met:50Cys ratio compared to other treatments. The TNF-α area under the curve for LPS-treated rats consuming a dietary 50Met:50Cys ratio was significantly higher (P < .004) compared to those consuming a dietary 100Met:0Cys ratio. A significant increase in the percentage of leukocytes that were neutrophils was observed in rats injected with LPS when compared to saline with no effect of diet. These results demonstrate that an alteration of the dietary Met:Cys ratio did not attenuate the inflammatory response to an IP injection of LPS in Wistar rats; however, a diet with a balanced Met:Cys ratio increased concentrations of Cys and GSH which may result in a more rapid response to an LPS challenge.


Assuntos
Aminoácidos Sulfúricos , Cisteína , Aminoácidos Sulfúricos/metabolismo , Animais , Dieta , Glutationa/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Metionina , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa
5.
Food Sci Nutr ; 8(8): 4340-4351, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884714

RESUMO

In contrast to other pulses, chickpea has a relatively high fat content (3%-10%). This study was designed to investigate direct-expanded chickpea-sorghum extruded snacks (50:50, 60:40, and 70:30 chickpea:sorghum, w/w) with respect to: their oxidative stability and sensory properties during accelerated (55°C) and room temperature (25°C) storage; correlations between chemical markers (peroxide value and p-anisidine value) and sensory data during accelerated storage; and the shelf-life of snacks extruded at the optimal expansion point as determined by a rotatable central composite design. Peroxide values and p-anisidine values were in the range of 0-2.5 mEq/Kg and 5-30, respectively, for both accelerated and room temperature storage, and increased during storage (p < .05). 70:30 and 60:40 (w/w) chickpea-sorghum snacks had higher peroxide and p-anisidine values compared to the 50:50 snack during storage at either temperature (p < .05). Rancid aroma and off-flavor of 60:40 and 70:30 chickpea-sorghum snacks (slightly intense = 6) also were higher than that of the 50:50 snack (moderately weak = 3) (p < .05). Significant correlations (p < .05) were found between chemical markers and sensory attributes (p < .05). The study illustrated that shelf-life decreased as the percentage of chickpea in the blend increased. Therefore, in terms of shelf-life, a 50:50 chickpea-sorghum blend is preferable.

6.
Food Sci Nutr ; 8(6): 2950-2958, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32566213

RESUMO

Chickpea is a widely produced pulse crop, but requires processing prior to human consumption. Protein bioavailability and amino acid quantity of chickpea flour can be altered by multiple factors including processing method. For this reason, the protein quality of processed chickpea flour was determined using in vivo and in vitro analyses for processed chickpeas. Processing differentially affected the protein digestibility-corrected amino acid score (PDCAAS) of chickpeas with extruded chickpea (83.8) having a higher PDCAAS score than both cooked (75.2) and baked (80.03). Interestingly, the digestible indispensable amino acid score (DIAAS) value of baked chickpea (0.84) was higher compared to both extruded (0.82) and cooked (0.78). The protein efficiency ratio, another measure of protein quality, was significantly higher for extruded chickpea than baked chickpea (p < .01). In vivo and in vitro analysis of protein quality were well correlated (R 2 = .9339). These results demonstrated that under certain circumstances in vitro methods could replace the use of animals to determine protein quality.

7.
J Texture Stud ; 51(2): 300-307, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31323133

RESUMO

In this study, response surface methodology (RSM) was used to evaluate the effect of extrusion conditions on physical properties of chickpea:barley extrudates (60:40), and the resulting protein quality of their flours. Barrel temperature (150-170°C) and moisture content (16-20%) were chosen as independent variables to generate a central composite design. Hardness, expansion index, bulk density, and protein quality were analyzed as responses parameters. Expansion was found to be higher at lower temperatures and higher moisture for the 60:40 chickpea:barley blend; bulk density became reduced with increased moisture; and hardness was found to increase at higher temperatures and lower moistures. The protein quality of their resulting flours was found to be greater at moisture contents higher than 16%. The composition, protein quality, and functional attributes were also examined for raw and precooked flours of chickpea, barley, and their blend at the center point of the RSM design (18% moisture, 160°C). Extrusion also leads to improved water hydration capacities and reduced viscosities for precooked individual and blended flours relative to the raw. Moreover, extrusion also led to improved protein quality in the chickpea and chickpea-barley blend, but not the individual barley flour.


Assuntos
Cicer , Farinha , Hordeum , Manipulação de Alimentos , Tecnologia de Alimentos , Dureza , Humanos , Proteínas/análise , Temperatura
8.
Food Sci Technol Int ; 26(3): 265-274, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31726873

RESUMO

The effect of barrel temperature (120 and 150 ℃, held constant in zones 4-6) and feed moisture (20 and 24%) on the protein quality of Kabuli chickpea, sorghum, and maize flours were examined, which included amino acid profile, in vitro protein digestibility and in vitro protein digestibility-corrected amino acid score (IV-PDCAAS). It was found that the limiting amino acid of chickpea changed from threonine to valine after extrusion, whereas both sorghum and maize were limiting in lysine before and after extrusion. The in vitro protein digestibility increased from 77 to 81% for chickpea and 73 to 76% for maize; values for sorghum remained at 74% after extrusion. However, the IV-PDCAAS for the extruded flours generally remained at the same level, 69% for chickpea, 22% for sorghum, and ∼35% for maize. The effect of extrusion temperature, moisture and their interaction was significant on protein quality of sorghum and maize, but in the case of chickpea, only the extrusion temperature was significant. Only chickpea extruded at 150 ℃ (regardless of the moisture) met the protein quality (PDCAAS > 70%) requirement to be used in food assistance products.


Assuntos
Cicer/química , Proteínas Alimentares/análise , Manipulação de Alimentos , Sorghum/química , Temperatura , Água , Zea mays/química , Aminoácidos/análise , Culinária , Digestão , Grão Comestível , Humanos
9.
Food Sci Nutr ; 7(9): 2932-2938, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31572586

RESUMO

Almonds (Prunus dulcis), such as all nuts, are positioned within the protein foods grouping within the current U.S. Dietary Guidelines. The ability to make claims related to the protein content of almonds, within the United States, requires substantiation via the use of the Protein Digestibility-Corrected Amino Acid Score (PDCAAS). The present study was designed to provide current estimates of PDCAAS, using both in vivo and in vitro assays, of key almond varietals from the 2017 California harvest. Additionally, historical protein and amino acid composition data on 73 separate analyses, performed from 2000 to 2014, were analyzed. Amino acid analysis confirmed lysine as the first-limiting amino acid, generating amino acid scores of 0.53, 0.52, 0.49, and 0.56 for Butte, Independence, Monterey, and Nonpareil varietals, respectively. True fecal protein digestibility coefficients ranged from 85.7% to 89.9% yielding PDCAAS values of 44.3-47.8, being highest for Nonpareil. Similar, albeit lower, results were obtained from the in vitro assessment protocol. Analysis of the historical data again positioned lysine as the limiting amino acid and yielded information on the natural variability present within the protein and amino acid profiles of almonds. Comparison of the 2017 AA profile, averaged across almond varietals, to the historical data provided strong evidence of persistence of amino acid composition and indices of protein quality over time.

10.
Food Technol Biotechnol ; 56(2): 257-264, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30228800

RESUMO

In order to determine the impact of fermentation on protein quality, pea protein concentrate (PPC) was fermented with Lactobacillus plantarum for 11 h and total phenol and tannin contents, protease inhibitor activity, amino acid composition and in vitro protein digestibility were analyzed. Phenol levels, expressed as catechin equivalents (CE), increased on dry mass basis from 2.5 at 0 h to 4.9 mg CE per 1 g of PPC at 11 h. Tannin content rose from 0.14 at 0 h to a maximum of 0.96 mg CE per 1 g of PPC after 5 h, and thereafter declined to 0.79 mg/g after 11 h. After 9 h of fermentation trypsin inhibitor activity decreased, however, at all other fermentation times similar levels to the PPC at time 0 h were produced. Chymotrypsin inhibitor activity decreased from 3.7 to 1.1 chymotrypsin inhibitory units (CIU) per mg following 11 h of fermentation. Protein digestibility reached a maximum (87.4%) after 5 h of fermentation, however, the sulfur amino acid score was reduced from 0.84 at 0 h to 0.66 at 11 h. This reduction in sulfur content altered the in vitro protein digestibility-corrected amino acid score from 67.0% at 0 h to 54.6% at 11 h. These data suggest that while fermentation is a viable method of reducing certain non-nutritive compounds in pea protein concentrate, selection of an alternative bacterium which metabolises sulfur amino acids to a lesser extent than L. plantarum should be considered.

11.
Nutrients ; 10(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799474

RESUMO

In this work, the protein quality of different bean types after undergoing the preparatory methods of baking, cooking and extrusion was assayed. Protein quality was assessed using a rodent bioassay to evaluate growth and protein digestibility while amino acid composition was determined via HPLC. In vivo protein digestibility was compared to an in vitro assessment method. The average protein digestibility corrected amino acid score (PDCAAS) for processed beans was higher than the digestible indispensable amino acid score (DIAAS) (61% vs. 45%). Extrusion/cooking of Phaseolus varieties resulted in higher PDCAAS (66% on average) and DIAAS values (61% on average) than baked (52% and 48%) while baked faba beans had higher PDCAAS (66%) and DIAAS (61%) values. A significant correlation was found between PDCAAS and in vitro PDCAAS (R² = 0.7497). This demonstrates which bean processing method will generate the optimal protein quality, which has benefits for both industrial production and individual domestic preparation.


Assuntos
Manipulação de Alimentos/métodos , Frutas/química , Valor Nutritivo , Phaseolus/química , Proteínas de Vegetais Comestíveis/análise , Vicia faba/química , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cromatografia Líquida de Alta Pressão , Culinária , Digestão , Fezes/química , Frutas/metabolismo , Masculino , Phaseolus/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo , Estabilidade Proteica , Ratos Sprague-Dawley , Vicia faba/metabolismo
12.
Food Res Int ; 108: 430-439, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735077

RESUMO

The impact of infrared heating surface temperature and tempering moisture on the nutritional properties of desi chickpea, hull-less barley, and their blends were examined. Specifically, this included changes to the level of anti-nutritive factors (i.e., trypsin/chymotrypsin inhibitors, total phenolics and condensed tannins), amino acid composition and in vitro protein digestibility. Results indicated that both temperature and the tempering/temperature treatment caused a reduction in levels of all anti-nutritional factors for both flours, and the effect was more prominent in the tempering-temperature combination. The amino acid composition of both flours was not substantially changed with tempering or infrared heating. The amino acid scores (AAS) of chickpea and barley flours, as determined by the first limiting amino acid using the FAO/WHO reference pattern found in the case of barley to be limiting in lysine with an AAS of ~0.9, whereas for chickpea flour, threonine was limiting and had an AAS of ~0.6. The in vitro protein digestibility of chickpea samples was found to increase from 76% to 79% with the tempering-heat (135 °C) combination, whereas barley flour increased from 72% to 79% when directly heated to 135 °C (without tempering). In vitro protein digestibility corrected amino acid score (IV-PDCAAS) was found to increase from 65% to 71% for chickpea flour and 44% to 52% for barley flour, respectively with tempering-temperature (135 °C) combination indicating that tempering with infrared heating can improve the nutritional value of both flours. The addition of chickpea flour to the barley flour acted to improve the nutritional properties (IV-PDCAAS), to an extent depending on the concentration of chickpea flour present.


Assuntos
Cicer/química , Culinária/métodos , Grão Comestível/química , Farinha/análise , Hordeum/química , Temperatura Alta , Raios Infravermelhos , Valor Nutritivo , Aminoácidos/análise , Digestão , Peptídeo Hidrolases/química , Proteínas de Vegetais Comestíveis/análise , Proteólise
13.
Food Chem ; 240: 588-593, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946315

RESUMO

In order to determine the effect of extrusion, baking and cooking on the protein quality of red and green lentils, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. On average, the Protein Digestibility-Corrected Amino Acid Score of red lentils (55.0) was higher than that of green lentils (50.8). Extruded lentil flour had higher scores (63.01 red, 57.09 green) than either cooked (57.40 red, 52.92 green) or baked (53.84 red, 47.14 green) flours. The average Digestible Indispensable Amino Acid Score of red lentils (0.54) was higher than green lentils (0.49). The Protein Efficiency Ratio of the extruded lentil flours (1.30 red, 1.34 green) was higher than that of the baked flour (0.98 red, 1.09 green). A correlation was found between in vivo and in vitro methods of determining protein digestibility (R2=0.8934). This work could influence selection of processing method during product development.


Assuntos
Lens (Planta) , Culinária , Proteínas Alimentares , Digestão , Farinha
14.
J Agric Food Chem ; 65(35): 7790-7796, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28796503

RESUMO

In order to determine the effect of extrusion, baking, and cooking on the protein quality of yellow and green split peas, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS) of green split peas (71.4%) was higher than that of yellow split peas (67.8%), on average. Similarly, the average Digestible Indispensable Amino Acid Score (DIAAS) of green split peas (69%) was higher than that of yellow split peas (67%). Cooked green pea flour had lower PDCAAS and DIAAS values (69.19% and 67%) than either extruded (73.61%, 70%) or baked (75.22%, 70%). Conversely, cooked yellow split peas had the highest PDCCAS value (69.19%), while extruded yellow split peas had the highest DIAAS value (67%). Interestingly, a strong correlation was found between in vivo and in vitro analysis of protein quality (R2 = 0.9745). This work highlights the differences between processing methods on pea protein quality and suggests that in vitro measurements of protein digestibility could be used as a surrogate for in vivo analysis.


Assuntos
Proteínas Alimentares/química , Pisum sativum/metabolismo , Proteínas de Plantas/química , Cor , Culinária , Proteínas Alimentares/metabolismo , Digestão , Humanos , Modelos Biológicos , Valor Nutritivo , Pisum sativum/química , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/metabolismo
15.
Food Sci Nutr ; 5(4): 896-903, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28748078

RESUMO

A study to determine the protein digestibility-corrected amino acid score and protein efficiency ratio of nine different cooked Canadian pulse classes was conducted in support of the establishment of protein quality claims in Canada and the United States. Split green and yellow pea, whole green lentil, split red lentil, Kabuli chickpea, navy bean, pinto bean, light red kidney bean, and black bean were investigated. Protein digestibility-corrected amino acid score (PDCAAS) and the protein efficiency ratio (PER) were determined using the appropriate rodent models. All pulses had high digestibility values, >70%, with PDCAAS values greater than 0.5, thereby qualifying as a quality protein in the United States, but only navy beans qualified as a good source of protein. All pulses except whole green lentils, split red lentils, and split green peas would qualify as sources of protein with protein ratings between 20 and 30.4 in Canada. These findings support the use of pulses as protein sources in the regulatory context of both the United States and Canada.

16.
J Agric Food Chem ; 65(19): 3919-3925, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28452476

RESUMO

Blending of protein sources can increase protein quality by compensating for limiting amino acids present in individual sources, whereas processing grain flours by extrusion or baking can also alter protein quality. To determine the effect of baking and extrusion on the protein quality of blended flours from buckwheat and pinto beans, a rodent bioassay was performed and compared to an in vitro method of protein quality determination. Overall, extruded products had higher protein efficiency ratio values, increased digestibility, and greater protein digestibility corrected amino acid score (PDCAAS) values than baked products, with the extruded buckwheat/pinto blend having the greatest PDCAAS value of the experimental diets investigated. A correlation was found between both digestibility and PDCAAS values generated from in vitro and in vivo methods. The use of in vitro digestibility analysis should be investigated as a potential replacement for the current rodent assay for nutrient content claim purposes.


Assuntos
Fagopyrum/química , Farinha/análise , Manipulação de Alimentos/métodos , Phaseolus/química , Proteínas de Plantas/química , Proteínas Alimentares/química , Digestão , Controle de Qualidade
17.
Pediatr Res ; 80(2): 293-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27055186

RESUMO

BACKGROUND: PepT1 transports dietary and bacterial peptides in the gut. We hypothesized that cysteinyl-glycine would ameliorate the inflammatory effect of a bacterial peptide, formyl-methionyl-leucyl-phenylalanine (fMLP), in both sow-fed and parenterally-fed piglets. METHODS: An intestinal perfusion experiment was performed in piglets (N = 12) that were sow-reared or provided with parenteral nutrition (PN) for 4 d. In each piglet, five segments of isolated intestine were perfused with five treatments including cysteine and glycine, cysteinyl-glycine, fMLP, free cysteine and glycine with fMLP, or cysteinyl-glycine with fMLP. Mucosal cytokine responses and intestinal morphology was assessed in each gut segment. RESULTS: PN piglets had lower mucosal IL-10 by approximately 20% (P < 0.01). Cysteinyl-glycine lowered TNF-α response to fMLP in PN-fed animals and IFN-γ response to fMLP in both groups (P < 0.05). The free cysteine and glycine treatment reduced TNF-α in sow-fed animals (P < 0.05). fMLP affected villus height in parenterally (P < 0.05), but not sow-fed animals. CONCLUSION: Parenteral feeding conferred a susceptibility to mucosal damage by fMLP. The dipeptide was more effective at attenuating the inflammatory response to a bacterial peptide than free amino acids. This may be due to competitive inhibition of fMLP transport or a greater efficiency of transport of dipeptides.


Assuntos
Citocinas/metabolismo , Dipeptídeos/química , Inflamação/metabolismo , Mucosa/metabolismo , N-Formilmetionina Leucil-Fenilalanina/química , Animais , Cisteína/química , Modelos Animais de Doenças , Predisposição Genética para Doença , Glicina/química , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Manitol/química , Nutrição Parenteral , Perfusão , Peroxidase/metabolismo , Distribuição Aleatória , Suínos , Fatores de Tempo
18.
Clin Nutr ; 35(4): 852-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26073670

RESUMO

UNLABELLED: PepT1, a di/tripeptide transporter, is preferentially preserved over free amino acid transporters in situations of gut stress. Therefore, our objective was to determine the impact of enterally delivered dipeptide-containing diets on indices of intestinal adaptation in neonatal piglets after intestinal resection. METHODS: Piglets (n = 25, 10 ± 1 d old) underwent an 80% jejuno-ileal resection and were provided 50% of nutritional support as TPN, and 50% as one of five, enteral test diets: 1) a control diet containing free amino acids, or the same diet but with equimolar amounts of free amino acids replaced by 2) alanyl-alanine, 3) alanyl-glutamine, 4) cysteinyl-glycine, or 5) both alanyl-alanine and cysteinyl-glycine. After 4 d of enteral feeding, indices of intestinal adaptation were assessed. Outcome measures included plasma and mucosal amino acid concentrations, morphological and histological parameters, protein synthesis, PepT1 mRNA and protein expression, and mucosal cytokine concentrations. RESULTS: Intestinal length, organ weight and protein synthesis rates were not different amongst groups. All of the dipeptide-containing diets reduced pro-inflammatory cytokine concentrations in the mucosa (TNF-α, IFN-γ). The cysteinyl-glycine diet supported greater villus height compared to all other dipeptides and greater crypt depth compared to alanyl-glutamine; however, none of the dipeptide diets altered intestinal morphology compared to the free amino acid control diet. CONCLUSIONS: This study showed that while there was no explicit morphological benefit of enteral dipeptides over their constituent free amino acids, there was the potential for the amelioration of intestinal inflammation by reducing pro-inflammatory cytokines. Enteral provision of dipeptides impacted intestinal adaptation, but the response was dipeptide-specific.


Assuntos
Dipeptídeos/administração & dosagem , Nutrição Enteral , Inflamação/metabolismo , Intestino Delgado/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Glutationa/metabolismo , Interferon gama/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/cirurgia , Tamanho do Órgão , Suínos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
19.
Br J Nutr ; 110(2): 275-81, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23234698

RESUMO

The H⁺-coupled transporter, peptide transporter 1 (PepT1), is responsible for the uptake of dietary di- and tripeptides in the intestine. Using an in vivo continuously perfused gut loop model in Yucatan miniature pigs, we measured dipeptide disappearance from four 10 cm segments placed at equidistant sites along the length of the small intestine. Pigs were studied at 1, 2, 3 (suckling) and 6 weeks (post-weaning) postnatal age. Transport capability across the PepT1 transporter was assessed by measuring the disappearance of ³H-glycylsarcosine; real-time RT-PCR was also used to quantify PepT1 mRNA. Each of the regions of intestine studied demonstrated the capacity for dipeptide transport. There were no differences among age groups in transport rates measured in the most proximal intestine segment. Transport of ³H-glycylsarcosine was significantly higher in the ileal section in the youngest age group (1 week) compared with the other the suckling groups; however, all suckling piglet groups demonstrated lower ileal transport compared with the post-weaned pigs. Colonic PepT1 mRNA was maximal in the earliest weeks of development and decreased to its lowest point by week 6. These results suggest that peptide transport in the small intestine may be of importance during the first week of suckling and again with diet transition following weaning.


Assuntos
Animais Recém-Nascidos/metabolismo , Colo/metabolismo , Dipeptídeos/metabolismo , Intestino Delgado , Proteínas de Membrana Transportadoras/metabolismo , Simportadores/metabolismo , Animais , Animais Recém-Nascidos/genética , Transporte Biológico , Colo/crescimento & desenvolvimento , Íleo/metabolismo , Intestino Delgado/crescimento & desenvolvimento , Intestino Delgado/metabolismo , Proteínas de Membrana Transportadoras/genética , Transportador 1 de Peptídeos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Simportadores/genética , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...